skip to main content


Search for: All records

Editors contains: "Jin, Shi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jin, Shi (Ed.)
    In this paper, we apply the idea of fictitious play to design deep neural networks (DNNs), and develop deep learning theory and algorithms for computing the Nash equilibrium of asymmetric N-player non-zero-sum stochastic differential games, for which we refer as deep fictitious play, a multi-stage learning process. Specifically at each stage, we propose the strategy of letting individual player optimize her own payoff subject to the other players’ previous actions, equivalent to solving N decoupled stochastic control optimization problems, which are approximated by DNNs. Therefore, the fictitious play strategy leads to a structure consisting of N DNNs, which only communicate at the end of each stage. The resulting deep learning algorithm based on fictitious play is scalable, parallel and model-free, i.e., using GPU parallelization, it can be applied to any N-player stochastic differential game with different symmetries and heterogeneities (e.g., existence of major players). We illustrate the performance of the deep learning algorithm by comparing to the closed-form solution of the linear quadratic game. Moreover, we prove the convergence of fictitious play under appropriate assumptions, and verify that the convergent limit forms an open-loop Nash equilibrium. We also discuss the extensions to other strategies designed upon fictitious play and closed-loop Nash equilibrium in the end. 
    more » « less